Quantitative Fluorescence Quenching on Antibody-conjugated Graphene Oxide as a Platform for Protein Sensing

نویسندگان

  • Ao Huang
  • Weiwei Li
  • Shuo Shi
  • Tianming Yao
چکیده

We created an immunosensing platform for the detection of proteins in a buffer solution. Our sensing platform relies on graphene oxide (GO) nanosheets conjugated with antibodies to provide quantitative binding sites for analyte proteins. When analyte proteins and standard fluorescein-labelled proteins are competing for the binding sites, the assay exhibits quantitative fluorescence quenching by GO for the fluorescein-labelled proteins as determined by the analyte protein concentration. Because of this mechanism, measured fluorescence intensity from unquenched fluorescein-labelled protein was shown to increase with an increasing analyte protein concentration. As an alternative to the conventional enzyme-linked immunosorbent assay (ELISA), our method does not require an enzyme-linked second antibody for protein recognition and the enzyme for optical signal measurement. Thus, it is beneficial with its low cost and fewer systematic errors caused by the series of antigen-antibody recognition steps in ELISA. Immune globulin G (IgG) was introduced as a model protein to test our method and our results showed that the limit of detection for IgG was 4.67 pmol mL-1 in the buffer solution. This sensing mechanism could be developed into a promising biosensor for the detection of proteins, which would broaden the spectrum of GO applications in both analytical biochemistry and clinical diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: application to "turn-on" DNA sensing in biological media.

As a platform for "turn-on" DNA sensing, the level of oxidation of graphene oxide strongly affects its fluorescence quenching ability and binding interactions to single-stranded oligodeoxyribonucleotides (ssODNs), leading to a broad range of sensitivity. Fine-tuning the level of oxidation of graphene oxide yields a DNA-detection platform that is highly sensitive in serum and biological media.

متن کامل

A graphene platform for sensing biomolecules.

Sensitive platform: The use of graphene oxide (GO) as a platform for the sensitive and selective detection of DNA and proteins is presented. The interaction of GO and dye-labeled single-stranded DNA leads to quenching of the dye fluorescence. Conversely, the presence of a target DNA or protein leads to the binding of the dye-labeled DNA and target, releasing the DNA from GO, thereby restoring t...

متن کامل

An amplified fluorescence detection of T4 polynucleotide kinase activity based on coupled exonuclease III reaction and a graphene oxide platform.

A novel amplified fluorescence graphene oxide (GO) sensing platform for sensitive detection of T4 polynucleotide kinase (PNK) activity and inhibition was developed based on the exonuclease III (ExoIII) reaction. The efficient digestion capacity of ExoIII and the super quenching ability of GO both contribute to the detection sensitivity.

متن کامل

PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer.

In this paper, we developed a simple method to detect fungi toxin (ochratoxin A) produced by Aspergillus Ochraceus and Penicillium verrucosumm, utilizing graphene oxide as quencher which can quench the fluorescence of FAM (carboxyfluorescein) attached to toxin-specific aptamer. By optimizing the experimental conditions, we obtained the detection limit of our sensing platform based on bare graph...

متن کامل

Fe3O4 Magnetic Nanoparticles/ Graphene Oxide Nanosheets/Carbon Cloth as an Electrochemical Sensing Platform

In this work, for eliminating the (RR1346), considered to be a waste in wastewater from dye industries electrochemical advanced oxidation process has been used. Graphene oxide coated carbon cloth (GO/CC) and Fe3O4 /GO coated carbon cloth (Fe3O4/GO/CC) electrodes has been fabricated by synthesized GO and Fe3O4 nanoparticles. Characteristic properties such as surface morphology as the main reason...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017